dnsmasq

Environmental Information

Ubuntu22.04

dnsmasq-2.91

Network card configuration

```
Bash
    root@5bfa19bcb2f8:~/projects/dnsmasg-2.91/src# ifconfig
    dhcp-test: flags=195<UP, BROADCAST, RUNNING, NOARP> mtu 1500
            inet 192.168.100.1 netmask 255.255.255.0 broadcast 0.0.0.0
            inet6 fe80::ece6:eff:feb6:c837 prefixlen 64 scopeid 0x20<link>
5
            ether ee:e6:0e:b6:c8:37 txqueuelen 1000 (Ethernet)
            RX packets 0 bytes 0 (0.0 B)
7
            RX errors 0 dropped 0 overruns 0 frame 0
            TX packets 51536 bytes 17403433 (17.4 MB)
9
            TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
11
    eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
            inet 172.17.0.5 netmask 255.255.0.0 broadcast 172.17.255.255
13
            ether 36:a7:3d:b9:4e:eb txqueuelen 0 (Ethernet)
            RX packets 9487524 bytes 9496935139 (9.4 GB)
14
15
            RX errors 0 dropped 0 overruns 0 frame 0
16
            TX packets 9167813 bytes 7466589563 (7.4 GB)
17
            TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
19
    lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
20
            inet 127.0.0.1 netmask 255.0.0.0
21
            inet6 ::1 prefixlen 128 scopeid 0x10<host>
            loop txqueuelen 1000 (Local Loopback)
            RX packets 296956686 bytes 59034980140 (59.0 GB)
            RX errors 0 dropped 0 overruns 0 frame 0
25
            TX packets 296956686 bytes 59034980140 (59.0 GB)
            TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
28
    vethc: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
            inet6 fe80::1c1b:beff:fe48:d192 prefixlen 64 scopeid 0x20<link>
            ether 1e:1b:be:48:d1:92 txqueuelen 1000 (Ethernet)
            RX packets 594 bytes 83566 (83.5 KB)
31
            RX errors 0 dropped 0 overruns 0 frame 0
            TX packets 165 bytes 19025 (19.0 KB)
34
            TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
    veths: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
            inet6 fe80::100d:39ff:feea:5599 prefixlen 64 scopeid 0x20<link>
            inet6 2001:db8::1 prefixlen 64 scopeid 0x0<global>
39
            ether 12:0d:39:ea:55:99 txqueuelen 1000 (Ethernet)
            RX packets 165 bytes 19025 (19.0 KB)
```

```
RX errors 0 dropped 0 overruns 0 frame 0

TX packets 594 bytes 83566 (83.5 KB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

dnsmasq.conf

```
YAML
   interface=dhcp-test
2
   bind-interfaces
4 port=0
5
6 log-dhcp
7 log-queries
8
9
    dhcp-range=2001:db8::100, 2001:db8::200, 64, 12h
10
    dhcp-option=option6:dns-server,[2001:db8::1]
11
12
13
    dhcp-option=option6:domain-search,example.local
14
15
    dhcp-option=option6:ntp-server,[2001:db8::1]
16
17
   # 启用路由器通告(RA)
18 enable-ra
19
20 # RA参数配置
21 ra-param=dhcp-test,high,0,3600
23 # 静态地址分配示例(可选)
24 # dhcp-host=id:00:01:02:03:04:05,[2001:db8::50],client1
25
26 # 状态文件位置
27 dhcp-leasefile=/var/lib/dhcp/dnsmasq.leases
29 # PID文件
    pid-file=/var/run/dnsmasq.pid
```

```
tshark -i lo -Y "dhcpv6" -O dhcpv6

./dnsmasq --no-daemon --log-queries -C ./dnsmasq.conf
```

Violation Report

1. Server Fails to Discard Unicast Solicit Message

```
Markdown

RFC 3315 & RFC8415

15. Message Validation

A server MUST discard any Solicit, Confirm, Rebind or Information-request messages it receives with a unicast destination address.
```

According to RFC 3315 & RFC8415, Section 15, "A server **MUST** discard any Solicit... messages it receives with a unicast destination address." The **Solicit** message is intended for discovering available DHCPv6 servers and therefore must be sent to a multicast address.

Our test confirms that dnsmasq processes and responds to a Solicit message sent directly to its unicast address.

Reproduce

Action: A Solicit message was sent directly to the server's unicast address (2001:db8::1) on port 547.

Observed Behavior: The tshark capture clearly shows the server at 2001:db8::1 receiving the unicast Solicit message (Frame 218) and subsequently responding with an Advertise message (Frame 239).

Expected Behavior: The server **MUST** have silently discarded the unicast **Solicit** message and sent no response.

The server's Advertise response is definitive proof of the violation.

```
Rash
    root@5bfa19bcb2f8:~/projects/dnsmasq-2.91/src# tshark -i lo -Y "dhcpv6" -0 dhcpv6
    Running as user "root" and group "root". This could be dangerous.
   Capturing on 'Loopback: lo'
   ** (tshark:4182782) 14:38:54.972521 [Main MESSAGE] -- Capture started.
   ** (tshark:4182782) 14:38:54.972564 [Main MESSAGE] -- File: "/tmp/wireshark_loFT
    GC82.pcapng"
6 Frame 218: 108 bytes on wire (864 bits), 108 bytes captured (864 bits) on interfa
    ce lo, id 0
   Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00
    (00:00:00:00:00:00)
   Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
9
    User Datagram Protocol, Src Port: 59785, Dst Port: 547
10
    DHCPv6
11
        Message type: Solicit (1)
12
        Transaction ID: 0x55acc3
13
        Client Identifier
            Option: Client Identifier (1)
14
15
            Length: 14
            DUID: 0001000100000000eee60eb6c837
16
17
            DUID Type: link-layer address plus time (1)
18
            Hardware type: Ethernet (1)
19
            DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
20
            Link-layer address: ee:e6:0e:b6:c8:37
        Identity Association for Non-temporary Address
            Option: Identity Association for Non-temporary Address (3)
23
            Length: 12
```

```
24
            IAID: 00000001
25
            T1: 0
26
            T2: 0
27
        Option Request
28
            Option: Option Request (6)
29
            Length: 4
30
            Requested Option code: DNS recursive name server (23)
31
            Requested Option code: Domain Search List (24)
32
33
    Frame 239: 203 bytes on wire (1624 bits), 203 bytes captured (1624 bits) on inter
    face lo, id 0
34
    Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00
    (00:00:00:00:00:00)
    Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
    User Datagram Protocol, Src Port: 547, Dst Port: 546
37
    DHCPv6
        Message type: Advertise (2)
39
        Transaction ID: 0x55acc3
        Client Identifier
41
            Option: Client Identifier (1)
42
            Length: 14
43
            DUID: 0001000100000000eee60eb6c837
            DUID Type: link-layer address plus time (1)
            Hardware type: Ethernet (1)
            DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
47
            Link-layer address: ee:e6:0e:b6:c8:37
        Server Identifier
            Option: Server Identifier (2)
            Length: 14
            DUID: 000100012feeadfb36a73db94eeb
52
            DUID Type: link-layer address plus time (1)
53
            Hardware type: Ethernet (1)
54
            DUID Time: Jun 25, 2025 12:54:19.000000000 UTC
            Link-layer address: 36:a7:3d:b9:4e:eb
56
        Identity Association for Non-temporary Address
57
            Option: Identity Association for Non-temporary Address (3)
            Length: 40
59
            IAID: 00000001
60
            T1: 21600
61
            T2: 37800
            IA Address
63
                 Option: IA Address (5)
                Length: 24
65
                IPv6 address: 2001:db8::102
66
                Preferred lifetime: 43200
67
                Valid lifetime: 43200
        Status code
69
            Option: Status code (13)
            Length: 9
71
            Status Code: Success (0)
72
            Status Message: success
73
        Preference
```

```
74
             Option: Preference (7)
             Length: 1
 76
             Pref-value: 0
 77
         Domain Search List
 78
             Option: Domain Search List (24)
 79
             Length: 15
             Domain name suffix search list
 81
                 List entry: example.local.
 82
         DNS recursive name server
             Option: DNS recursive name server (23)
 84
             Length: 16
              1 DNS server address: 2001:db8::1
     Frame 240: 251 bytes on wire (2008 bits), 251 bytes captured (2008 bits) on inter
     face lo, id 0
     Ethernet II, Src: 00:00:00:00:00:00 (00:00:00:00:00), Dst: 00:00:00:00:00:00
     (00:00:00:00:00:00)
     Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
 90
     Internet Control Message Protocol v6
 91
     DHCPv6
 92
         Message type: Advertise (2)
 93
         Transaction ID: 0x55acc3
 94
         Client Identifier
 95
             Option: Client Identifier (1)
 96
             Length: 14
             DUID: 0001000100000000eee60eb6c837
 97
             DUID Type: link-layer address plus time (1)
             Hardware type: Ethernet (1)
             DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
101
             Link-layer address: ee:e6:0e:b6:c8:37
         Server Identifier
             Option: Server Identifier (2)
104
             Length: 14
             DUID: 000100012feeadfb36a73db94eeb
106
             DUID Type: link-layer address plus time (1)
107
             Hardware type: Ethernet (1)
             DUID Time: Jun 25, 2025 12:54:19.000000000 UTC
109
             Link-layer address: 36:a7:3d:b9:4e:eb
110
         Identity Association for Non-temporary Address
111
             Option: Identity Association for Non-temporary Address (3)
112
             Length: 40
113
             IAID: 00000001
114
             T1: 21600
115
             T2: 37800
116
             IA Address
117
                  Option: IA Address (5)
118
                 Length: 24
119
                 IPv6 address: 2001:db8::102
120
                 Preferred lifetime: 43200
121
                 Valid lifetime: 43200
122
         Status code
             Option: Status code (13)
```

```
124
              Length: 9
              Status Code: Success (0)
126
              Status Message: success
127
         Preference
             Option: Preference (7)
129
              Length: 1
130
              Pref-value: 0
131
         Domain Search List
132
              Option: Domain Search List (24)
133
              Length: 15
134
              Domain name suffix search list
135
                 List entry: example.local.
136
         DNS recursive name server
137
              Option: DNS recursive name server (23)
138
              Length: 16
```

3. Unconditional New Binding Creation on Rebind, Leading to Address Pool Exhaustion

According to RFC 8415, Section 18.2.2:

```
1 RFC 8415
2 18.3.5. Receipt of Rebind Messages
3 Therefore, the server SHOULD only create new bindings during processing of a Rebind message if the server is configured to respond with a Reply message to a Solicit me ssage containing the Rapid Commit option.
```

Our analysis of the dnsmasq source code indicates that the dhcp6_no_relay function, which handles the Rebind message, does not adhere to this guideline. When the function receives a Rebind for a lease that it does not currently have on record, it proceeds to call lease6_allocate to create a new binding for the client unconditionally. The implementation is missing the required check of the server's Rapid Commit configuration before creating this new binding.

This means an attacker does not need to go through the normal Solicit->Advertise->Request->Reply (SARR) exchange; they can directly trigger a new lease creation simply by sending a Rebind message for a lease that does not exist.

Reproduce:

```
3 Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
 4 User Datagram Protocol, Src Port: 37101, Dst Port: 547
 5
    DHCPv6
 6
         Message type: Rebind (6)
 7
         Transaction ID: 0xdd9a2c
 8
         Client Identifier
 9
             Option: Client Identifier (1)
10
             Length: 14
11
             DUID: 00010001685d3c4f001122334455
             DUID Type: link-layer address plus time (1)
12
13
             Hardware type: Ethernet (1)
14
             DUID Time: Jun 26, 2055 12:25:51.000000000 UTC
             Link-layer address: 00:11:22:33:44:55
16
         Identity Association for Non-temporary Address
             Option: Identity Association for Non-temporary Address (3)
18
             Length: 40
19
             IAID: 00000001
20
             T1: 0
             T2: 0
22
             IA Address
23
                 Option: IA Address (5)
24
                 Length: 24
25
                 IPv6 address: 2001:db8::123
                 Preferred lifetime: 60
26
27
                 Valid lifetime: 120
29
     Frame 17813: 209 bytes on wire (1672 bits), 209 bytes captured (1672 bits) on inte
     rface lo, id 0
30
    Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00 (0
     0:00:00:00:00:00)
31
    Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
     User Datagram Protocol, Src Port: 547, Dst Port: 546
33
34
         Message type: Reply (7)
         Transaction ID: 0xdd9a2c
36
         Client Identifier
             Option: Client Identifier (1)
             Length: 14
39
             DUID: 00010001685d3c4f001122334455
40
             DUID Type: link-layer address plus time (1)
41
             Hardware type: Ethernet (1)
42
             DUID Time: Jun 26, 2055 12:25:51.000000000 UTC
43
             Link-layer address: 00:11:22:33:44:55
44
         Server Identifier
             Option: Server Identifier (2)
46
             Length: 14
             DUID: 00010001300a4cd936a73db94eeb
47
             DUID Type: link-layer address plus time (1)
49
             Hardware type: Ethernet (1)
50
             DUID Time: Jul 16, 2025 11:43:21.000000000 UTC
51
             Link-layer address: 36:a7:3d:b9:4e:eb
         Identity Association for Non-temporary Address
```

```
53
            Option: Identity Association for Non-temporary Address (3)
            Length: 40
            IAID: 00000001
            T1: 54
            T2: 99
            IA Address
                Option: IA Address (5)
                Length: 24
61
                IPv6 address: 2001:db8::123
62
                Preferred lifetime: 120
                Valid lifetime: 120
64
        NTP Server
65
            Option: NTP Server (56)
            Length: 20
            NTP Server Address
68
                Suboption: NTP Server Address (1)
69
                Length: 16
70
                NTP Server Address: 2001:db8::1
71
        Domain Search List
72
            Option: Domain Search List (24)
73
            Length: 15
74
            Domain name suffix search list
                List entry: example.local.
76
        DNS recursive name server
77
            Option: DNS recursive name server (23)
            Length: 16
             1 DNS server address: 2001:db8::1
                                                                                     Bash
  root@5bfa19bcb2f8:~/projects/dnsmasq-2.91/src# cat /var/lib/dhcp/dnsmasq.leases
   duid 00:01:00:01:30:0a:4c:d9:36:a7:3d:b9:4e:eb
  1752667777 1 2001:db8::123 * * # ->[new]<-
   1752710104 1 2001:db8::113 * 00:01:00:01:68:5d:0f:51:00:11:22:33:44:55
   1752709993 1 2001:db8::1e4 * 00:01:00:01:68:5d:0f:41:00:11:22:33:44:55
   root@5bfa19bcb2f8:~/projects/dnsmasg-2.91/src#
```

An attacker can repeatedly send Rebind messages with spoofed, unique Client Identifiers (DUIDs). For each malicious Rebind packet, dnsmasq will incorrectly and unconditionally create a new lease, reserving an IPv6 address from its pool. This process can be repeated until the server's entire address pool is depleted.

Once the address pool is exhausted, legitimate devices on the network will be unable to obtain new leases or renew existing ones, effectively cutting them off from network access and causing a widespread service outage.

4. Unconditional Lease Creation Without Configuration Check

```
1 RFC 8415
2 18.3.5. Receipt of Rebind Messages
```

If the server is configured to create new bindings as a result of processing Rebind messages (also see the note below about the Rapid Commit option (Section 21.14)), the server SHOULD create a binding and return the IA with allocated leases with life times and, if applicable, T1/T2 values and other information requested by the clien t.

We have observed that when processing Rebind messages, the code unconditionally creates a new lease if an existing lease is not found, without verifying whether the server is configured to allow the creation of new bindings in response to Rebind messages. Consequently, we have classified this behavior as non-compliant. Nevertheless, while this appears to be a minor issue, we have retained the classification to ensure completeness.

5. Violation: Ignoring Zero Link-Address Field

```
1 rfc8415
2 13.1. Selecting Addresses for Assignment to an IA_NA
3 According to [RFC6221], the server MUST ignore any link-address field whose value i s zero.
```

We have discovered that when handling DHCPv6 relay-forward messages, the code copies the link address field (which may be zero) into the status structure without checking for a zero value. This violates Section 3.1 of RFC6221, which requires that servers must ignore any link address fields with a value of zero.

```
Bash
  \tt 0000000fe80000000000000001122fffe3344660009002601a5342e0001000e00010001000000000112
  23344660003000c00000001000000000000000" | xxd -r -p | nc -6u -q1 2001:db8::1 547ec
  -p | nc -6u -q1 2001:db8::1 547
                                                             Markdown
1 Frame 25386: 138 bytes on wire (1104 bits), 138 bytes captured (1104 bits) on inte
   rface lo, id 0
   Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00 (0
   0:00:00:00:00:00)
   Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
4
   User Datagram Protocol, Src Port: 57034, Dst Port: 547
5
   DHCPv6
6
      Message type: Relay-forw (12)
7
      Hopcount: 0
8
      Link address: ::
9
      Peer address: fe80::11:22ff:fe33:4466
10
      Relay Message
11
         Option: Relay Message (9)
         Length: 38
         DHCPv6
14
            Message type: Solicit (1)
15
            Transaction ID: 0xa5342e
```

```
16
                 Client Identifier
17
                     Option: Client Identifier (1)
                     Length: 14
19
                     DUID: 0001000100000000001122334466
                     DUID Type: link-layer address plus time (1)
21
                     Hardware type: Ethernet (1)
                     DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
23
                     Link-layer address: 00:11:22:33:44:66
                 Identity Association for Non-temporary Address
25
                     Option: Identity Association for Non-temporary Address (3)
                     Length: 12
27
                     IAID: 00000001
                     T1: 0
```

As expected, the program should have discarded such messages instead of continuing to process them, but the log:

```
Markdown

dnsmasq-dhcp: no address range available for DHCPv6 request from relay at ::

dnsmasq-dhcp: RTR-ADVERT(veths) 2001:db8::
```

6. Violation in Handling Relay-forward Messages with Hop-Count Limit

This issue is small but really very interesting.

The code fails to discard Relay-forward messages when hop-count equals HOP_COUNT_LIMIT (32). The rule requires discarding if hop-count >= 32, but the code only checks for hopcount > 32.

```
/* RFC 3315 HOP_COUNT_LIMIT */
2184 if (hopcount > 32 || !(header = put_opt6(NULL, 34)))
2185 return 1;
2186
```

7. Incorrect Use of Interface-Id Option in DHCPv6 Messages

```
    ## Add to state of the state of t
```

According to the description of this rule, the Interface-Id Option must not appear in any message other than Relay-forward or Relay-reply. However, when we constructed such messages, the program did not check or reject them.

```
Bash
   root@5bfa19bcb2f8:~/projects/dnsmasq-2.91/src# echo "010030390001000e00010001000000
   d3132333435" | xxd -r -p | nc -6u -q1 2001:db8::1 547
                                                                              Python
  Frame 30586: 124 bytes on wire (992 bits), 124 bytes captured (992 bits) on interf
    ace lo, id 0
    Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00 (0
    0:00:00:00:00:00)
    Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
   User Datagram Protocol, Src Port: 34285, Dst Port: 547
5
    DHCPv6
6
        Message type: Solicit (1)
7
        Transaction ID: 0x003039
8
       Client Identifier
9
           Option: Client Identifier (1)
10
           Length: 14
11
           DUID: 000100010000000001122334455
           DUID Type: link-layer address plus time (1)
13
           Hardware type: Ethernet (1)
           DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
14
15
           Link-layer address: 00:11:22:33:44:55
16
       Identity Association for Non-temporary Address
17
           Option: Identity Association for Non-temporary Address (3)
           Length: 12
19
           IAID: 00000001
20
           T1: 0
21
           T2: 0
        Interface-Id
23
           Option: Interface-Id (18)
24
           Length: 20
           Interface-ID: 746573742d696e746572666163652d31323333435
26
    Frame 30613: 227 bytes on wire (1816 bits), 227 bytes captured (1816 bits) on inte
27
    rface lo, id 0
28
    Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00 (0
```

```
0:00:00:00:00:00)
    Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
   User Datagram Protocol, Src Port: 547, Dst Port: 546
31
    DHCPv6
32
        Message type: Advertise (2)
        Transaction ID: 0x003039
        Client Identifier
            Option: Client Identifier (1)
36
            Length: 14
            DUID: 000100010000000001122334455
            DUID Type: link-layer address plus time (1)
            Hardware type: Ethernet (1)
40
            DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
41
            Link-layer address: 00:11:22:33:44:55
42
        Server Identifier
            Option: Server Identifier (2)
44
            Length: 14
45
            DUID: 00010001300a4cd936a73db94eeb
46
            DUID Type: link-layer address plus time (1)
47
            Hardware type: Ethernet (1)
48
            DUID Time: Jul 16, 2025 11:43:21.000000000 UTC
49
            Link-layer address: 36:a7:3d:b9:4e:eb
        Identity Association for Non-temporary Address
51
            Option: Identity Association for Non-temporary Address (3)
            Length: 40
53
            IAID: 00000001
54
            T1: 21600
55
            T2: 37800
56
            IA Address
57
                Option: IA Address (5)
                Length: 24
59
                 IPv6 address: 2001:db8::1da
60
                Preferred lifetime: 43200
61
                Valid lifetime: 43200
        Status code
63
            Option: Status code (13)
64
            Length: 9
65
            Status Code: Success (0)
66
            Status Message: success
67
        Preference
            Option: Preference (7)
69
            Length: 1
70
            Pref-value: 0
71
        NTP Server
72
            Option: NTP Server (56)
73
            Length: 20
74
            NTP Server Address
                 Suboption: NTP Server Address (1)
76
                 Length: 16
                 NTP Server Address: 2001:db8::1
78
        Domain Search List
79
            Option: Domain Search List (24)
```

```
Length: 15

Domain name suffix search list

List entry: example.local.

DNS recursive name server

Option: DNS recursive name server (23)

Length: 16

1 DNS server address: 2001:db8::1
```

8. Incorrect Handling of NoAddrsAvail Status Code for IA Option

```
rfc8415
2 18.3.2. Receipt of Request Messages
3 If the server does not send the NotOnLink status code but it cannot assign any IP a ddresses to an IA, the server MUST return the IA option in the Reply message with n o addresses in the IA and a Status Code option containing status code NoAddrsAvail in the IA.
```

Our analysis reveals that when there are no available addresses in the IA (Identity Association) within a DHCPv6 REQUEST, the server adds a top-level status code option (NoAddrsAvail) instead of embedding it within the IA option as required. According to the specifications, the IA option must include the indication of no available addresses and embed the status code option (NoAddrsAvail) inside the IA itself.

To verify this issue, we first exhausted the address pool of the DHCPv6 server and then sent the request packet.

```
Bash
 echo "030030390001000e00010001000000000011223344550002000e000100012feeadfb36a73db94
  00001c20" \mid xxd - r - p \mid nc - 6u - q1 \ 2001:db8::1 \ 547
                                                                         Markdown
   root@5bfa19bcb2f8:~/projects/dnsmasq-2.91/src# tshark -i lo -Y "dhcpv6" -O dhcpv6
2
   Running as user "root" and group "root". This could be dangerous.
   Capturing on 'Loopback: lo'
   ** (tshark:1593669) 06:27:22.152591 [Main MESSAGE] -- Capture started.
    ** (tshark:1593669) 06:27:22.152641 [Main MESSAGE] -- File: "/tmp/wireshark_loUP
   VR82.pcapng"
   Frame 84: 146 bytes on wire (1168 bits), 146 bytes captured (1168 bits) on interf
    ace lo, id 0
   Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00
    (00:00:00:00:00:00)
   Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
   User Datagram Protocol, Src Port: 56518, Dst Port: 547
10
   DHCPv6
11
       Message type: Request (3)
12
       Transaction ID: 0x003039
13
       Client Identifier
14
           Option: Client Identifier (1)
```

```
15
             Length: 14
16
             DUID: 0001000100000000001122334455
17
             DUID Type: link-layer address plus time (1)
             Hardware type: Ethernet (1)
19
             DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
20
             Link-layer address: 00:11:22:33:44:55
        Server Identifier
22
             Option: Server Identifier (2)
23
             Length: 14
24
             DUID: 000100012feeadfb36a73db94eeb
25
             DUID Type: link-layer address plus time (1)
26
             Hardware type: Ethernet (1)
27
             DUID Time: Jun 25, 2025 12:54:19.000000000 UTC
             Link-layer address: 36:a7:3d:b9:4e:eb
29
        Identity Association for Non-temporary Address
30
             Option: Identity Association for Non-temporary Address (3)
31
             Length: 12
             IAID: 00000001
33
             T1: 0
34
            T2: 0
35
        IA Address
             Option: IA Address (5)
             Length: 24
38
             IPv6 address: 2001:db8::100
39
             Preferred lifetime: 3600
40
             Valid lifetime: 7200
41
42
    Frame 122: 224 bytes on wire (1792 bits), 224 bytes captured (1792 bits) on inter
    face lo, id 0
43
    Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00
    (00:00:00:00:00:00)
    Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
45
    User Datagram Protocol, Src Port: 547, Dst Port: 546
    DHCPv6
47
        Message type: Reply (7)
        Transaction ID: 0x003039
49
        Client Identifier
50
             Option: Client Identifier (1)
51
             Length: 14
52
             DUID: 0001000100000000001122334455
53
             DUID Type: link-layer address plus time (1)
54
             Hardware type: Ethernet (1)
             DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
56
             Link-layer address: 00:11:22:33:44:55
        Server Identifier
             Option: Server Identifier (2)
59
             Length: 14
             DUID: 000100012feeadfb36a73db94eeb
61
             DUID Type: link-layer address plus time (1)
62
             Hardware type: Ethernet (1)
63
             DUID Time: Jun 25, 2025 12:54:19.000000000 UTC
             Link-layer address: 36:a7:3d:b9:4e:eb
```

```
Identity Association for Non-temporary Address
66
            Option: Identity Association for Non-temporary Address (3)
67
            Length: 37
            IAID: 00000001
68
69
            T1: infinity
70
            T2: infinity
71
            Status code
72
                 Option: Status code (13)
73
                 Length: 21
74
                 Status Code: NoAddrAvail (2)
                 Status Message: address unavailable
76
        Status code
            Option: Status code (13)
78
            Length: 9
79
            Status Code: Success (0)
80
            Status Message: success
81
        Preference
            Option: Preference (7)
83
            Length: 1
84
            Pref-value: 0
        NTP Server
            Option: NTP Server (56)
            Length: 20
            NTP Server Address
89
                 Suboption: NTP Server Address (1)
90
                 Length: 16
91
                 NTP Server Address: 2001:db8::1
        Domain Search List
93
            Option: Domain Search List (24)
            Length: 15
95
            Domain name suffix search list
                 List entry: example.local.
97
        DNS recursive name server
            Option: DNS recursive name server (23)
            Length: 16
```

9. Missing Requested Options When No Addresses Are Available

```
#文本

1 rfc8415

2 18.3.9. Creation of Advertise Messages

3 The server MUST include options in the Advertise message containing configuration p

arameters for all of the options identified in the Option Request option (see Secti

on 21.7) in the Solicit message that the server has been configured to return to th

e client.
```

We found that the server does not include requested options in the Advertise message when no addresses are available. The rule mandates that the server MUST include all requested options

(from the Option Request option in the Solicit) that it is configured to return, regardless of address assignment status.

We constructed a Solicit message explicitly requesting the DNS recursive name server (Option 23) and the domain search list (Option 24). However, in the Advertise message, these options were not included; only the client identifier, server identifier, and the status code "NoAddrAvail" were returned. This indicates that the server was unable to allocate an address and did not provide the requested option content.

```
Bash
  root@5bfa19bcb2f8:~/projects/dnsmasg-2.91/src# echo "010030390001000e00010001000000
   u -q1 2001:db8::1 547
                                                                            Markdown
   root@5bfa19bcb2f8:~/projects/dnsmasq-2.91/src# tshark -i lo -Y "dhcpv6" -O dhcpv6
1
    Running as user "root" and group "root". This could be dangerous.
3 Capturing on 'Loopback: lo'
    ** (tshark:1613859) 06:40:21.568514 [Main MESSAGE] -- Capture started.
 4
    ** (tshark:1613859) 06:40:21.568556 [Main MESSAGE] -- File: "/tmp/wireshark_lo77F
    I82.pcapng"
   Frame 60: 108 bytes on wire (864 bits), 108 bytes captured (864 bits) on interface
    lo, id 0
   Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00 (0
    0:00:00:00:00:00)
   Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
   User Datagram Protocol, Src Port: 51651, Dst Port: 547
    DHCPv6
10
11
        Message type: Solicit (1)
12
        Transaction ID: 0x003039
13
        Client Identifier
14
           Option: Client Identifier (1)
           Length: 14
           DUID: 0001000100000000001122334455
16
           DUID Type: link-layer address plus time (1)
18
           Hardware type: Ethernet (1)
19
           DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
20
           Link-layer address: 00:11:22:33:44:55
21
        Identity Association for Non-temporary Address
22
           Option: Identity Association for Non-temporary Address (3)
23
           Length: 12
24
           IAID: 00000001
           T1: 0
           T2: 0
27
        Option Request
28
           Option: Option Request (6)
29
           Length: 4
           Requested Option code: DNS recursive name server (23)
           Requested Option code: Domain Search List (24)
33
    Frame 106: 130 bytes on wire (1040 bits), 130 bytes captured (1040 bits) on interf
    ace lo, id 0
```

```
34 Ethernet II, Src: 00:00:00:00:00:00:00:00:00:00:00:00), Dst: 00:00:00:00:00:00 (0
    0:00:00:00:00:00)
    Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
    User Datagram Protocol, Src Port: 547, Dst Port: 546
    DHCPv6
        Message type: Advertise (2)
        Transaction ID: 0x003039
        Client Identifier
41
            Option: Client Identifier (1)
42
            Length: 14
            DUID: 0001000100000000001122334455
            DUID Type: link-layer address plus time (1)
45
            Hardware type: Ethernet (1)
            DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
            Link-layer address: 00:11:22:33:44:55
48
        Server Identifier
49
            Option: Server Identifier (2)
            Length: 14
            DUID: 000100012feeadfb36a73db94eeb
            DUID Type: link-layer address plus time (1)
            Hardware type: Ethernet (1)
            DUID Time: Jun 25, 2025 12:54:19.000000000 UTC
55
            Link-layer address: 36:a7:3d:b9:4e:eb
        Status code
57
            Option: Status code (13)
            Length: 24
            Status Code: NoAddrAvail (2)
            Status Message: no addresses available
```

10. Violation of DHCPv6 IA_PD Handling in Advertise Messages

```
rfc8415
18.3.9. Creation of Advertise Messages
The server MUST include IA options in the Advertise message containing any addresse s and/or delegated prefixes that would be assigned to IAs contained in the Solicit message from the client.

rfc3315
17.2.2. Creation and Transmission of Advertise Messages
If the Solicit message from the client included one or more IA options, the server MUST include IA options in the Advertise message containing any addresses that would be assigned to IAs contained in the Solicit message from the client.
```

We found that dnsmasq does not handle the IA_PD option in request messages. This is because only IA_NA and IA_TA are processed in the check_ia function, which explicitly filters out the IA_PD option (OPTION6_IA_PD). As a result, when constructing the Advertise message, the IA_PD option in the request message is ignored, which violates relevant rules.

С

```
1 static int check_ia(struct state *state, void *opt, void **endp, void **ia_option)
 2
 3
       state->ia_type = opt6_type(opt);
 4
       *ia_option = NULL;
 5
 6
       if (state->ia_type != OPTION6_IA_NA && state->ia_type != OPTION6_IA_TA)
 7
         return 0;
 8
 9
       if (state->ia_type == OPTION6_IA_NA && opt6_len(opt) < 12)</pre>
 10
         return 0;
 12
       if (state->ia_type == OPTION6_IA_TA && opt6_len(opt) < 4)</pre>
 13
         return 0:
 14
 15
       *endp = opt6_ptr(opt, opt6_len(opt));
       state->iaid = opt6_uint(opt, 0, 4);
 16
       *ia_option = opt6_find(opt6_ptr(opt, state->ia_type == OPTION6_IA_NA ? 12 : 4),
     *endp, OPTION6_IAADDR, 24);
 19
       return 1;
   }
20
```

We constructed a Solicit message that includes an IA_PD option, but the server did not return an Advertise that contains IA_PD.

```
Bash
   root@5bfa19bcb2f8:~/projects/dnsmasq-2.91/src# echo "011718020001000e000100010000000
   00eee60eb6c8370019000c000000001000000000000000000" | xxd -r -p | nc -6u -q1 2001:db8::
   1 547
                                                                                   纯文本
 1 Frame 40917: 100 bytes on wire (800 bits), 100 bytes captured (800 bits) on interf
    ace lo, id 0
    Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00 (0
    0:00:00:00:00:00)
    Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
 4 User Datagram Protocol, Src Port: 45731, Dst Port: 547
 5
    DHCPv6
 6
        Message type: Solicit (1)
 7
        Transaction ID: 0x171802
        Client Identifier
 8
 9
            Option: Client Identifier (1)
10
            Length: 14
11
            DUID: 0001000100000000eee60eb6c837
12
            DUID Type: link-layer address plus time (1)
13
            Hardware type: Ethernet (1)
14
            DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
15
            Link-layer address: ee:e6:0e:b6:c8:37
        Identity Association for Prefix Delegation
17
            Option: Identity Association for Prefix Delegation (25)
18
            Length: 12
            IAID: 00000001
20
```

```
T1: 0
            T2: 0
22
    Frame 40948: 130 bytes on wire (1040 bits), 130 bytes captured (1040 bits) on inte
    rface lo, id 0
    Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (0
25
    0:00:00:00:00:00)
    Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
    User Datagram Protocol, Src Port: 547, Dst Port: 546
  DHCPv6
28
        Message type: Advertise (2)
29
        Transaction ID: 0x171802
        Client Identifier
31
            Option: Client Identifier (1)
32
            Length: 14
            DUID: 0001000100000000eee60eb6c837
34
            DUID Type: link-layer address plus time (1)
            Hardware type: Ethernet (1)
37
            DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
            Link-layer address: ee:e6:0e:b6:c8:37
39
        Server Identifier
            Option: Server Identifier (2)
            Length: 14
            DUID: 00010001300a4cd936a73db94eeb
42
            DUID Type: link-layer address plus time (1)
            Hardware type: Ethernet (1)
            DUID Time: Jul 16, 2025 11:43:21.000000000 UTC
            Link-layer address: 36:a7:3d:b9:4e:eb
        Status code
            Option: Status code (13)
            Length: 24
49
            Status Code: NoAddrAvail (2)
```

11. DHCPv6 Relay Agent Fails to Include Mandatory InterfaceId Option

rfc3315
2 20.1.1. Relaying a Message from a Client
3 If the relay agent cannot use the address in the link-address field to identify the interface through which the response to the client will be relayed, the relay agent MUST include an Interface-Id option (see Section 22.18) in the Relay-forward messag e.

4
5 rfc8415
6 19.1.1. Relaying a Message from a Client
7 If the relay agent cannot use the address in the link-address field to identify the interface through which the response to the client will be relayed, the relay agent

MUST include an Interface-Id option (see Section 21.18) in the Relay-forward messag According to RFC 3315/8415, if a relay agent cannot guarantee that the link-address it uses will be sufficient for the DHCPv6 server to determine the correct return path, it MUST include an Interface-Id option to provide an unambiguous identifier for the client's interface.

Our code audit of the relay_upstream6 function (in src/rfc3315.c) reveals the following flaw:

- The function unconditionally copies a configured local address (relay->local.addr6) into the link-address field of the Relay-forward message. Please see rfc3315.c line 2209.
- 2. Crucially, it lacks any validation logic to check if this link-address (which could be the unspecified address :: or an address shared by multiple interfaces) is actually sufficient to uniquely identify the interface on which the client's message was received.
- 3. Then, the function **never adds the OPTION6_INTERFACE_ID option**, even in scenarios where it is mandatory.

Thus, we consider it may be a violation.

We do not have dynamic validation due to environment configuration.

13. Missing Validation for Mandatory Options in DHCPv6 Option Request Option (ORO) Processing

```
Markdown

1    rfc8415
2    21.7.    Option Request Option
3    For certain message types, some option codes MUST be included in the Option Request option; see Table 4 for details.

Bash

1    root@5bfa19bcb2f8:~/projects/dnsmasq-2.91/src# echo "031616160001000e00010001000000 000011223344550002000e00010001300a4cd936a73db94eeb00080002000000300280000000100000 70800000a8c0005001899990db80badf00d0000000000123400000e1000001c20000600040017002 c" | xxd -r -p | nc -6u -q1 2001:db8
```

We specified LQ_QUERY in the Option Request of the Request message, but according to the provisions of Table 4, this is prohibited. Therefore, it can be determined that there is a lack of corresponding check logic in dnsmasq.

```
Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00 (0
 3 0:00:00:00:00:00)
 4 Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
 5 User Datagram Protocol, Src Port: 52054, Dst Port: 547
 6 DHCPv6
        Message type: Request (3)
 8
        Transaction ID: 0x161616
9
        Client Identifier
10
            Option: Client Identifier (1)
11
            Length: 14
            DUID: 0001000100000000001122334455
13
            DUID Type: link-layer address plus time (1)
            Hardware type: Ethernet (1)
14
15
            DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
            Link-layer address: 00:11:22:33:44:55
16
17
        Server Identifier
            Option: Server Identifier (2)
18
            Length: 14
19
            DUID: 00010001300a4cd936a73db94eeb
21
            DUID Type: link-layer address plus time (1)
22
            Hardware type: Ethernet (1)
            DUID Time: Jul 16, 2025 11:43:21.000000000 UTC
23
            Link-layer address: 36:a7:3d:b9:4e:eb
24
25
        Elapsed time
            Option: Elapsed time (8)
26
            Length: 2
28
            Elapsed time: Oms
        Identity Association for Non-temporary Address
29
            Option: Identity Association for Non-temporary Address (3)
            Length: 40
31
32
            IAID: 00000001
33
            T1: 1800
            T2: 2700
34
            IA Address
                Option: IA Address (5)
36
                Length: 24
                IPv6 address: 9999:db8:bad:f00d::1234
                Preferred lifetime: 3600
39
40
                Valid lifetime: 7200
        Option Request
41
            Option: Option Request (6)
            Length: 4
43
            Requested Option code: DNS recursive name server (23)
44
            Requested Option code: Leasequery Query (44)
    Frame 59576: 183 bytes on wire (1464 bits), 183 bytes captured (1464 bits) on inte
    rface lo, id 0
47
    Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00 (0
    0:00:00:00:00:00)
48
    Internet Protocol Version 6, Src: 2001:db8::1, Dst: 2001:db8::1
49
50 User Datagram Protocol, Src Port: 547, Dst Port: 546
51 DHCPv6
```

```
52
        Message type: Reply (7)
        Transaction ID: 0x161616
        Client Identifier
            Option: Client Identifier (1)
            Length: 14
57
            DUID: 000100010000000001122334455
            DUID Type: link-layer address plus time (1)
59
            Hardware type: Ethernet (1)
            DUID Time: Jan 1, 2000 00:00:00.000000000 UTC
61
            Link-layer address: 00:11:22:33:44:55
        Server Identifier
62
63
            Option: Server Identifier (2)
            Length: 14
            DUID: 00010001300a4cd936a73db94eeb
            DUID Type: link-layer address plus time (1)
67
            Hardware type: Ethernet (1)
            DUID Time: Jul 16, 2025 11:43:21.000000000 UTC
69
            Link-layer address: 36:a7:3d:b9:4e:eb
70
        Identity Association for Non-temporary Address
            Option: Identity Association for Non-temporary Address (3)
71
            Length: 29
            IAID: 00000001
74
            T1: infinity
            T2: infinity
76
            Status code
                Option: Status code (13)
                Length: 13
79
                 Status Code: NotOnLink (4)
                 Status Message: not on link
81
        Status code
            Option: Status code (13)
            Length: 24
            Status Code: NoAddrAvail (2)
            Status Message: no addresses available
86
        DNS recursive name server
87
            Option: DNS recursive name server (23)
            Length: 16
```

12/14/15/16/17

We also noticed some mandatory rules related to the client side. Theoretically, dnsmasq, as the server, should have corresponding error message checking logic, but this might be controversial or lead to unnecessary mandatory checks. Therefore, we classify them under the last item as an optional fix.

The following has been verified: the server lacks the logic to check for violations of the corresponding messages.

Markdown

1 rfc8415

2 A DHCP client MUST include the INF_MAX_RT option code in any Option Request option (see Section 21.7) it sends in an Information-request message.

3

4 A DHCP client MUST request the Information Refresh Time option in the Option Reque st option (see Section 21.7) when sending Information-request messages.

5

6 A client MUST include an Elapsed Time option in messages to indicate how long the client has been trying to complete a DHCP message exchange.

7

8 A client MUST NOT request the Information Refresh Time option in the Option Reques t option in any other messages.

9

10 A client MUST include an Option Request option in a Solicit, Request, Renew, Rebin d, or Information-request message to inform the server about options the client wa nts the server to send to the client.